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Grid methods for solving the Schrodinger equation and time 
dependent quantum dynamics of molecular photofragmentation 

and reactive scattering processes 

by GABRIEL G. BALINT-KURTI, RICHARD N. DIXON 
and C. CLAY MARSTON? 

School of Chemistry, University of Bristol, 
Bristol BS8 lTS, England 

This review will concentrate on new theoretical methods for solving the 
quantum dynamics of molecular systems. The approach will be that of solving the 
time dependent Schrodinger equation, and extracting from it the measurable 
quantities of experimental interest. Applications to the modelling of molecular 
photodissociation processes and to the theory of reactive molecular collisions will 
be discussed. 

1. Introduction 
The time dependent Schrodinger equation may be written in the form: 

(1) 
a 
at 

ih - +(x, t )  = $+(x, t). 

If the Hamiltonian operator is independent of time, the formal solution of this equation 
is very simple and may be written in the form: 

+(x, t )  = exp ( - i$t/h) +(x, t = 01, (2) 
where +(x, t =  0) represents the initial state of the system. 

The right hand side of the above equation contains an ‘exponentiated’ Hamiltonian 
operator. Such an exponentiated operator may be evaluated by expanding the 
exponential in a Taylor series. If this is done the following is obtained: 

Equation (3) has been written out in detail so as to show what is required to solve the 
time dependent Schrodinger equation. The key to solving it lies in our ability to operate 
on a function (e.g. +(x, t = 0)) with the Hamiltonian operator 2. We see that all that is 
needed to solve the equation is repeated operations on +(x, t =0) with this operator. In 
Section 2, where we discuss the basic theory, we will see how the use of Fourier 
transforms together with that of a grid representation greatly facilitates the evaluation 
of the necessary expressions. 

t Present address: Max-Planck-Institut fur Stromungsforschung, Bunsenstrasse 10, D-3400 
Gottingen, Germany. 
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318 G. G.  Baht-Kurti  et al. 

The theory of Fourier transforms and the use of grids in coordinate space leads very 
naturally to a new and extremely transparent method of solving the time independent 
Schrodinger equation for bound vibrational states of molecules. The theory of this 
method is presented first of all. At present its main advantage lies on its transparent 
simplicity, reliability and robustness. As discussed in Section 3 it may eventually 
transpire that it will form the basis of numerically efficient algorithms for calculating 
bound molecular vibrational-rotational states. 

Section 4 is devoted to discussing the application of time dependent wavepacket 
computations to the study of photodissociation processes. In particular we describe the 
procedures we have developed for the analysis of the time dependent wavepacket for 
the computation of the final fragment quantum state distributions. The method 
automatically generates the photofragmentation cross-section over the entire photon 
frequency range of interest from a single dynamical computation. This aspect of time 
dependent methods constitute one of their main advantages. 

In Section 5 we describe the application of the methods to the theory of reactive 
molecular collisions. The same techniques as have been applied to molecular 
photofragmentation theory can also be applied here. Some preliminary results are 
presented and comparisons made with the results of time independent computations. 
The problems encountered are discussed and new techniques being developed for 
overcoming them are described. The great advantage of time dependent quantum 
dynamical techniques is that they can provide information on the reaction cross- 
section over a large range of collision energies from solving the dynamics ofjust a single 
wavepacket motion are again emphasised. 

2. Basic theory 
2.1. Coordinate and momentum space and the role of Fourier transforms 

Let us consider a single particle of mass m moving in one linear dimension under the 
influence of a potential V The non-relativistic Hamiltonian operator, 2, may be 
written as a sum of a kinetic energy and a potential energy operator 

P2 = - + V(2). 
2m (4) 

We fol€ow here the philosophy of Dirac’s book (1958), in that the operators in equation 
(4) act on vectors of an abstract Hilbert space, and have not yet been cast into any 
particular representation. The principle representation which we will use is the 
Schrodinger or coordinate representation, and the Hamiltonian operator 2, used in 
equations (1H3), was expressed in this representation. The basic vectors or ket’s of the 
coordinate representation are denoted by Ix) and are eigenfunctions of the position or 
coordinate operator 2. 

2lx) = xlx). (5)  
The orthogonality and completeness relationships in terms of these basic vectors are 

(xlx’) =d(x-x’), 
m 

f, = f Ix)(xl dx. 
- m  
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Solving the Schrodinger equation 319 

The potential is diagonal in the coordinate representation. 

(x'lV(i)lx) = V(x)6(x-x'). 

The eigenfunctions of the momentum operator are written as 

ilk) = kklk). (9) 

The kinetic energy operator is therefore diagonal in the momentum representation 

(k'l FIE) = Tk6(k - k') 

-~ h2k2 
2m 

-~ - 6(k-k'). 

We will also require the orthogonality and completeness relationships in terms of the 
momentum eigenstates; 

(klk')=6(k-k'), (11) 
and 

and the transformation matrix elements between the coordinate and momentum 
representations: 

Equation (4) to (1 3) are the basic equations needed to derive all the others used in 
grid methods for solving both the time independent and the time dependent 
Schrodinger equations. Let us now consider the problem of acting on the wavefunc- 
tions, $(x, t =O) ,  expressed in coordinate space, with the Hamiltonian operator. The 
coordinate space wavefunction is really the 'representative' of the state function 
I$@ = 0)) in coordinate space, i.e.: 

$(x, t = 0) = (xl$(t  = 0)). (14) 

The action of the Hamiltonian on the wavefunction in the coordinate representation 
may be written as: 

&(x, t)=(x(&l$(t=O)) 

=(XI[?+ V(i)]l$(t=O)> 

= (x lTI$(t=O))  + (xlV(i)l$(t=O)>. (15) 

The potential energy operator, V(i ) ,  is local and may be represented (in the coordinate 
representation) by its values on a grid of points at pre-chosen values of the coordinate x. 
Its action on the wavefunction therefore involves just the multiplication of the values of 
Vand $ at each value of x (i.e. xi) on the grid. The action of the kinetic energy operator is 
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320 G. G. Balint-Kurti et al. 

more complicated. Using the identity operators (equations (7) and (12)) the coordinate 
representative of f“$(t  = O ) )  can be written in the form: 

= ( x / f (  jm /k)<k/dk)( im Ix’)(x’\dx‘ 
- m  - m  

= s s 
= sm 

(xi f’Ik)( klx’) (x’l$(t = 0)) dx’ dk 

(xl(hk)’/2m(k)(k(x’)(x’($(t =O)) dx’ dk 

k = - a ,  X ? = - Q )  

k = - m  x ‘= -m 

m 

kZ exp (ikx) exp ( - ikx’) $(x‘, t = 0) dx‘ dk 
k2 1 

m 

kZ exp (ik(x - x’)]$(x’, t = 0) dx’ dk, (16) 
h2 1 

where we have used equations (4), (9), (1 3) and (1 4). 

Fourier transforms: 
The wavefunction in coordinate space and that in momentum space are related by 

=Im (xlk)(kl$(t=O))dk 
-00 

$(x, t = 0) =- exp (ikx) $(k, t = 0) dk, 

and similarly: 

$(k,t=O)=- exp ( - ikx) $(x, t = 0) dx. 

Equation (16) may therefore be rewritten as: 

(XI Q$(t = 0)) = - ~ 
kZ exp (ikx) $(k, t = 0) dk. 

In order to operate with the (one dimensional) kinetic energy operator on the wave- 

(1) Fourier transform the wavefunction +(x, t = 0) to obtain its momentum space 
representation $(k, t = 0) (equation (18)). 

function the following steps are needed: 
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Solving the Schrodinger equation 32 1 

(2) Multiply by (hk)2/2rn and perform the inverse Fourier transform (equation 

Efficient, grid based, Fourier transform techniques, called fast Fourier transforms 
(FFT’s) have been developed (Press et al. 1986) and their use makes this method of 
computing the action of the kinetic energy operator on the wavefunction very potent. 
The use of the FFT method in connection with solving the time dependent Schrodinger 
has been pioneered by Feit et al. (1982) and extensively used by Kosloff and Kosloff 
(1983a, b, 1986, Kosloff 1988). This has opened up an important new area in molecular 
quantum dynamics (Kulander 1991). 

The application of grid methods to the solution of the time independent 
Schrodinger equation involves the coordinate representation of the Hamiltonian 
operator. Using equations (8), (10) and (16) we can write this in the form: 

(19)). 

(xl2lx’) = (XI Tlx’) + V(x)d(x - x’) 
W 

exp [ik(x - x’)] & dk + V(x)d(x - x’). 

2.2. Discretization, grids and discrete Fourier transforms 
For any numerical application we need to replace the continuous range of 

coordinate values x by a grid of N discrete values, x,. We will use a uniform grid 

x ,  = nAx, (21) 
where Ax is the spacing between the grid points. The length of the grid is L = NAx. It 
will be useful first of all to examine the discretization of the normalization integral for a 
wavefunction I&) (where I&) is the coordinate representative of a state function 
(xi$) = $(x)). The normalization condition for the wavefunction is 

$*(x)$(x) dx = 1. 

Discretizing this integral on our regular grid of N values of x we obtain: 
N 

or 

We may find it convenient in actual computations to define a ‘rescaled’ wave- 
function, $,; 

The normalization condition in terms of this ‘rescaled’ wavefunction is: 
$n =(Ax)”2$(xn)- (24) 

N 

n= 1 
c I*,l2=1. 

The grid size and spacing chosen in coordinate space determines the reciprocal grid 
size in momentum space. The total length of the coordinate space covered by the grid is 
L = NAx. This length determines the longest wavelength, and therefore the smallest 
frequency, which occurs in the reciprocal momentum space. 
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322 G. G.  Balint-Kurti et al. 

2n: A k = ,  
L 

where Lis the total length of the grid. 
This relationship gives us the grid spacing in momentum space. The central point in 

the momentum space grid is taken as k = 0, and the grid points are evenly distributed 
about zero. In analogy to equation (21) the momentum values at the discrete grid points 
in momentum space are given by 

k, = mAk - kmi,, (27) 

where kmin = (Nn:/L). The maximum absolute value of the momentum which can be 
represented on the grid is therefore k,,, = (Nn:/L). 

The basic bra's and ket's of our discretized coordinate space give the value of a 
wavefunction at the grid points. 

(xnt$> =$(xn)=(Ax)- "'$n* (28) 

The identity operator (equation (7)), which must now be compatible with equations 
(22), (25) and (28), becomes: 

N 

Similarly the orthogonality condition may now be written as: 

AX(XnlXJ = 4 l l .  (30) 
The above relationships provide the basis for two important developments. Firstly 

they enable us to formulate a 'grid' representation of the Hamiltonian operator, which 
in turn provides us with an exceedingly simple, robust and accurate method for the 
calculation of bound state wavefunctions (see Section 3 below). Secondly it provides the 
bridge between the theory of continuous Fourier transforms, which form the basis of 
most theoretical discussions, and that of discrete Fourier transforms which are 
necessarily used in all numerical applications. It will be useful for later reference to write 
down the detailed relationships between the continuous functions, $(x,) and $(k,,,) (see 
equations (17) and (18)), evaluated at the grid points in coordinate and momentum 
space respectively and the discrete values actually used in computations. The 
relationship between $(x,) and its discretized analogue $n is given in equation (24). 
From this and the relationships above we find that the representative of the 
wavefunction in momentum space is: 

1 112 N 
$(k,) = (k)"' [ (i) 1 exp (- i2xnm/N) $,, . 

n =  1 

The term in the square brackets is the discrete Fourier transform of the set of N values 
$,,, and we will denote it by f,: 

112 N 1 exp ( - i2n:nm/N) $,,, 
n =  1 

(32) 
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Solving the Schrodinger equation 323 

and the relationship between $(k,) and f, is therefore: 

Finally the inverse Fourier transform, giving in terms off, is (see Press et al. 1986): 
112 N 

C exp (i2nnmlN) f,. 
n =  1 

(34) 

2.3. Treatment of angular coordinates using fast Fourier transforms 
The treatment of the angular variables in an analogous manner to that proposed in 

the preceding two Sections has until now been beset by problems (Kosloff 1988). This 
arises because the kinetic energy operator in spherical polar coordinates contains 
awkward inverse powers of sin 6. In this section we review a solution to this problem 
proposed recently by one of us (Dixon 1992). Let us consider a three atom system A- 
BC. If we use a body fixed coordinate system with the BC+A vector being the body 
fixed 2 axis, the overall wavefunction may be written in the form (Baht-Kurti and 
Shapiro 1979, 1981): 

u, p and y are the Euler angles describing the overall rotation of the triatomic system. 
R is the BC-A distance, r is the B-C distance and 6 is the angle between these vectors. 
These internal coordinates are called Jacobi coordinates. If we now take the matrix 
elements between the D&(ufiy) functions we obtain the Hamiltonian operator: 

where 

1 +- [J(J + 1) - 2K2] 
PR2 

(37) 

and 

couples rotational basis functions with the selection rules AJ= AM = 0 and 
AK = k 1 (Baht-Kurti and Shapiro 1981). The reduced masses in the above equations 
are given by: 

We will concern ourselves here mainly with the solution of the angular part of the 
diagonal Hamiltonian operator (equation (37)). The angular eigenfunctions of this 
operator are well known to be the associated Legendre functions PgcosO). A grid 
method for acting on the wavefunction with the Hamiltonian operator could easily be 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



324 G. G. Balint-Kurti et al. 

developed based on these orthogonal polynomials and the related Gaussian quadra- 
ture rules using the discrete variable representation (DVR) methodology advocated by 
Light and coworkers (Light et al. 1985). A major problem with this approach would be 
that an exact solution would require the coupling of diagonal equations with different 
K values (K is the helicity or the component of the angular momentum about the body 
fixed Z axis). The DVR method based on the associated Legendre polynomials would 
require the use of different grids in the angular variable 8 for every one of the different K 
values occurring, and would present very many complications on this account. The 
method proposed here uses a regular grid in 0 which is independent of the K value. 

The angular dependent part of the diagonal kinetic energy operator (equation (37)) 
is: 

1 h 2 (  1 -+- I ) [  ~- 1 a ( .  sm8- a )  -~ K ~ ]  Xdiag = - - 
2 , U R ~  pfr2  sine ae ae sin28 . 

The centrifugal potential proportional to (K2/sin2 0) imposes a boundary condition 
that $(Rr%) varies with 0 as OK at small 0 and ( ~ - 0 ) ~  as 8+.n (cf. the associated 
Legendre polynomials). To satisfy this condition $ is represented as the product: 

$(RrB) =(sin e)m4(Rre), (41) 

where we choose m = 0 for K even and m = 1 for K odd. 
The wavefunction 4 is then represented as a linear combination of the functions 

cos(nO), and because of this we can use the theory of discrete cosine transforms in the 
formalism. In order to avoid the singularities in the operator at 8 = 0 and at 0 = K we use 
a half integral regular mesh of points between 8=0 and X. The relevant discrete 
quarter-wave Fourier transforms are: 

N 
&)= 1 4&8,)~0s(ne,), odnd iv -  1, (42) 

1= 1 

and the reverse Fourier transform is given by: 

where the grid points have been chosen to be: 

el = (21 - 1 ) 4 2 ~ ,  1 G 1 G N .  (44) 
Using a recursion relationship between the products of cosines we can show that: 

+ ( n + m ) ( n + m + l )  cos(n0) 1 = -(sin 0)'" 

In this equation j is integral for n even, half-integral for n odd, and increases in steps 
of 1. Thus 2j is only even for n even, and odd for n odd. The action of the angular part of 
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Solving the Schrodinger equation 325 

the Hamiltonian (equation (40)) on the angular wavefunction may therefore be written 
in the form: 

2,iag+(e)=-- h 2 (  2 -+- pR2 p'r2 )[ -- sin8 a0 a ( s i n e A ) - z ] + ( 8 )  ae sin2e 

= - ( L + L ) { & + ( e )  h2 

2 pR2 p'r2 

where 

(n + m)(n + m + 1)F(n) + (2m + 1) 

= ( n +  l ) (n+m+l)F(n) ,  ( N - 2 ) < n Q ( N -  1) .  (47) 

Equations (46) and (47) show in detail how the operation on an angular 
wavefunction of the angular part of the Hamiltonian operator may be performed using 
an FFT type technique. The operation contains two parts. The first term involves the 
multiplication of the angular wavefunction d,(e) by a centrifugal potential. The first step 
for the second term i s  to perform the discrete FFT of the angular wavefunction d, 
(equation (42)) and so obtain the Fourier amplitudes F(n) in the 'momentum' space 
conjugate to the angular space. The vector of numbers C(n) (equation (47)) is then 
constructed by very simple combinations of integers and the F(n) Fourier transform 
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326 G. G. Balint-Kurti et al. 

coefficients. Finally the G(n) are subjected to an inverse Fourier transform and 
multiplied by the inertial factor. Note that the premultiplier (sin 6)"' factors out of the 
equation, and need not be carried through during the propagation of +(RrO). 

3. Bound states and the solution of the time independent Schrodinger equation: The 
Fourier grid Hamiltonian method (FGH) 

Equation (20) provides a convenient representation of the Hamiltonian operator in 
coordinate space. If we replace the basic vectors Ix) associated with the continuous 
space by the discretized analogues, Ix,) we immediately obtain a grid representation of 
the Hamiltonian operator. This discretized representation provides a Hamiltonian 
matrix whose dimensions are those of the number of grid points. The matrix elements of 
this matrix are trivially simple to compute. Indeed we present below a new analytic 
expression for these matrix elements. The potential, evaluated at the relevant grid 
points, appear only on the diagonal elements of the matrix. No integrations over a set of 
basis functions are required to compute the potential energy matrix elements as is 
normally the case in variational calculations of bound state wavefunctions. It has been 
shown (Marston and Balint-Kurti 1989, Balint-Kurti et al. 1991) that if the values of the 
wavefunction at the grid points are regarded as the variational parameters, and these 
are varied to minimize the energy, we arrive at the conclusion that the eigenvalues of the 
Hamiltonian matrix just mentioned are the bound state energies of the nuclear motion 
of the system (rotational-vibrational energy levels) and the corresponding eigenvectors 
give the value of the wavefunction at the grid points. 

Directly from the coordinate representation of the Hamiltonina operator (equation 
(20)) we obtain: 

Hij= (XJ&'~X~) 

exp [ilan(i-j)/N] 
N 

where 

2n 
NAx' 

Ak=- (49) 

N is the (even) number of grid points and n = N/2 .  We now define a renormalized 
Hamiltonian matrix: 

H: = AxHij. (50) 

which is just the term in curly brackets in equation (48). 

where 
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Solving the Schrodinger equation 327 

The summation in equation (51) may be performed analytically (Gradshteyn and 
Ryzhik 1965, Colbert and Miller 1992) to yield 

6 + 11  + v(xi)dij, if i = j ,  

- - if i#j .  

Figure 1 shows a Morse potential energy curve with parameters corresponding to 
an H F  molecule and also the definition of the evenly spaced grid. Figure 2 shows the 
tenth bound state wavefunction obtained by diagonalizing the Hamiltonian matrix 
above using the potential function of figure 1. The methods described above have been 
used in both one (Chu 1990) and two-dimensional (Lehr and Chatzidimitriou- 
Dreismann 1991) computations of quasi-bound resonance states and their use for 
multi-dimensional bound state calculations is being investigated. 

4. Molecular photofragmentation theory 
The use of time dependent quantum dynamics in the discussion of photodissoci- 

ation processes was pioneered by Heller and coworkers (Heller 1978, 1979, Kulander 
and Heller 1978, Lee and Heller 1979). Their implementation of the theory generally 
made use of approximate semiclassical methods of solving for the time dependent 
motion of the wavepacket. The work of Kosloff (Kosloff and Kosloff (1983, 1986), 
Kosloff, Leforestier et al. (1991): see also Heather and Metiu (1987)) showed how the 
quantum theory could be solved exactly in a practical manner. Since that time there 
have been many papers applying these methods to the calculation of photodissociation 
line shapes (Gray and Wozny 1991, Tang et al. 1991, Untch et al. 1991a, b), Williams 
et al. 1991, Zhang et al. 1991). The product quantum state distributions are also of 
interest, and we review below our own method for computing these quantities. Another 
interesting quantity which may be computed using time dependent quantum dynamics 
is the emission spectrum of the molecule during its breakup process. All these aspects of 
the theory are illustrated through the discussion of the photodissociation of H,S in its 
first absorption band. 

Contrary to many previously held views of photodissociation processes in small 
molecules these processes often, or even normally, involve several electronically excited 
states of the molecule (Dixon 1985). Figure 3 shows, in schematic form, the potential 
energy curves arising from the modelling of the photodissociation of H2S (Dixon et al. 
1990, Schinke et al. 1991). It was found that the spectral line shape of the first U.V. 
absorption band of H,S could not be modelled using only a single excited electronic 
state, and required the use of two electronic states as shown in the figure (figure 3). The 
experimental and theoretically computed absorption line shapes are shown in figure 4. 
The distinguishing feature of this spectrum is that at low frequencies there is very little 
structure, and a regular structure sets in at about 50 000 cm- '. This agrees qualitatively 
with the situation depicted in figure 3. The regular structure arises from the bound 
states associated with the potential marked V2,. It has a sharp onset because it only 
starts at the energy corresponding to the lowest bound state of this potential. 

The photodissociation process starts with the molecule in a bound vibrational- 
rotational state of its ground electronic state. Let us denote this wavefunction by 
t,bi(R,r,Ei). The molecule absorbs a quantum of light and is excited to a higher 
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328 G. G.  Balint-Kurti et al. 

Figure 1. Morse potential energy curve for HF molecule showing definition of one-dimensional 
grid. 

electronic state. It has been shown (Heller 1978, Krishna and Goalson 1988, Balint- 
Kurti et al. 1990) that the spectroscopic absorption cross-section may be obtained by 
the following computational procedure. 

(1) Create the initial wavepacket @(R, r, t = 0) =p(R, r)l.rl/XR, r, E,)) ,  where d R ,  r )  is 
the transition dipole moment associated with the spectrowpic transition, 
(Note that we use only two coordinates in the discussion). 

(2) Propagate the wavefunction forward in time by using the grid techniques 
outlined above (equation (19)) and the methods described in the work of 
Kosloff (1988) to obtain the time dependent wavepacket @(R, r, t)  at a series of 
closely spaced time steps. 

(3) At each time step compute the autocorrelation function F(t) 
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Figure 2. 

4 w  
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0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

F-H I A 
Vibrational wavefunctions for u=9 vibrational state of H F  molecule computed using 

the Fourier grid Hamiltonian method. 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

F-H I A 
Vibrational wavefunctions for u=9 vibrational state of H F  molecule computed using 

the Fourier grid Hamiltonian method. 

(4) The total absorption cross-section is then given by the Fourier transform over 
time of this autocorrelation function: 

where E = Ei + hv. 

Using this approach the spectral absorption line shape is obtained over all photon 
energies from a single computation of the molecular dynamics. 

of figure 3) which emerged from the modelling of the H,S + hv-+HS(v) + H photodis- 
sociation process in its first U.Y. absorption band, while figure 6 shows several 

Figure 5 shows the dissociative electronically excited potential energy surface (6 
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0 10 20 
30 j(col4O 50 

Figure 10. The rotational distribution of the CO fragment calculated for excitation of HCO to 
an energy of 17750cm-', in simulation of the predissociation of levels of the A state. 
Histogram: calculation for J(HC0) =O. Curve: simulation for a thermal HCO sample 
at 70K. 

1990). The figure shows the rotational product quantum state distribution for a single 
energy. The analysis however generates a (discretized) continuum of such diagrams-a 
product quantum state distribution for every energy obtained from the time to energy 
Fourier transform (equation (57)). 

On physical ground it is clear that it should be possible to compute any quantity of 
experimental interest from a knowledge of the time evolution of the wavepacket 
(@(R, r, t )  =exp( -i&t/h) p(R, r)lqi(R, r, Ei))) .  One other such quantity which is 
currently of great interest is the emission spectrum of a molecule during its 
decomposition, the decomposition itself having been caused by the absorption of a 
photon of light. There are therefore two radiation frequencies involved, that of the 
incident radiation which causes the photodissociation (v,) and that of the emitted 
radiation (vs). The cross-section for the emission of radiation of frequency vs is given by: 

where 
m 

f ( v , )=  1 exp Ci(Ei + hvJt/hl (xAR r, Ef)l@(R t)> dt* (60) 
t = O  

After the emission of the radiation the molecule is in the vibrational state with 
wavefunction xAR, r, Ef) and energy E, = Ei + h(v, - vs). Figure 1 1 shows some model 
bound state vibrational wavefunctions computed for H2S using a local mode 
approximation which we have found to fit the stretching energy levels quite accurately 
(see Dixon et al. (1990)). The approximation ignores the bending coordinate and treats 
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6 -  

r 

4 -  

2 -  

f i  
L 

' R G  'R; 2 R. 
Figure 5. Dissociative excited electronic state potential energy surface modelled to fit the 

H,S + hv+HS + H photodissociation process in its first U.V. absorption band. The line 
marked R = R ,  is the 'analysis' line discussed in the text. 

R R R 
Figure 6. Time dependent motion of the wavepacket representing the photodissociation of 

H,S on its first dissociative excited electronic potential energy surface. Snapshots of the 
wavepacket are shown at time intervals of At = 4 fs. The absolute value of the wavefunction 
is plotted. (Frames C and D are separated by 8 fs). 
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‘snapshots’ of the time development of the wavepacket on this surface. In figure 5 a line 
marked R=R, is shown, which we call the ‘analysis’ line. By examining the 
wavepacket along this ‘cut’ at every time step it is possible to compute the ‘partial’ 
cross-sections which measure the probability of the process producing a particular final 
fragment quantum state (Balint-Kurti et al. 1990). Denoting the HS diatomic 
vibrational wavefunctions by &(r), the time evolving wavepacket is analysed at each 
time step by taking a cut through it at a fixed R value (or HS-H distance) corresponding 
to R = R, and expanding it in terms of the asymptotic fragment wavefunctions dU(r): 

where 

4:(r)@(R = R,, r, t) dr 

=<4u(r)lYR=R,7r,t)). (56) 

These time dependent expansion coefficients are now Fourier transformed to give an 
energy dependent amplitude: 

exp(iEt/h)C,(R,, t)dt 

m 

=L J exp(iE/h) <$Ar)I@(Rm7 r, 0) dt. (57) 2n; t = o  

The squares of the energy dependent amplitudes, A,(R,, E), are then proportional 
to the sought-after partial cross-sections?: 

The time dependent coefficients Cu(R,, t )  (equation (56)) for the photodissociation of 
H,S are shown in figure 7 for the various vibrational quantum states of the HS(u) 
fragment. The partial cross-sections for the production of each individual fragment 
vibrational quantum state are obtained by taking the Fourier transforms of these 
coefficients (equation (57)) and then squaring the resulting energy dependent coeffi- 
cients (equation (58)). Figure 8 shows the partial cross-sections obtained in this way. 
The coefficients C,(R,, t) (figure 7)  for vibrational states v = 0,l and 2 show some 
subsidiary structure after the main smooth hump. Such structure is similar to that 
which sometimes occurs in the autocorrelation function. As in that case it gives rise an 
oscillatory contribution to the corresponding partial cross-section versus energy plots 
(figure 8) which are otherwise smooth. The origin of such oscillations has been 
previously discussed in several publications (Heller 1981, Baht-Kurti et al. 1990). The 
forms of the predicted partial cross-sections for each vibrational state may be 
compared with the experimental measurements of Xie et al. (1990) and are found to 

t Note that this equation differs by a factor of 1 6x2 from that given in Balint-Kurti et al. 1990). 
This difference arises from the omission of a factor of4n in the equation for the energy normalized 
continuum wavefunction. 
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Figure 7. Absolute values of the time dependent expansion coefficients (equation (55)) from 
vibrational analysis of the wavepacket along the analysis cut in the exit channel (i.e. 
R = R,, see figure 5). The vibrational quantum numbers correspond to the asymptotic 
photofragment HS states (reproduced with permission from J .  chern. Phys., 1990, 93, 
6520). 

Figure 8. Calculated partial cross-sections (equation (57)) for the production of individual HS 
photofragment vibrational quantum states as a function of photon energy. The sum of the 
partial cross-sections are shown on the back plane (reproduced with permission from 
J .  chern. Phys., 1990, 93, 6520). 
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334 G. G. Balint-Kurti et al. 

agree well for the first few vibrational states ( u = O ,  1 and 2) but to be too great in 
magnitude for higher vibrational states, showing need for an improved model of the 
photodissociation process. As in the case of the calculation of the absorption spectrum 
from the autocorrelation function (equation (54) and figure 4) we see that a single 
computation of the wavepacket dynamics provides all of the partial cross-sections for 
the production of each of the photofragment quantum states over the entire energy 
range of interest. 

The same method of analysing the product quantum state population may be used 
for the determination of the population distribution of the rotational states of 
dissociation fragments. Figure 9 shows a wavepacket for the dissociation of H-CO on 
its ground electronic state potential energy surface (Dixon 1992). The horizontal axis of 
the figure corresponds to the H-CO dissociation coordinate, while the vertical axis is 
the Jacobi angle between the H-CO vector and the C-0 diatomic axis. The initial 
wavepacket was prepared so as to correspond to one which might result from a curve 
crossing near linearity from an electronically excited potential energy surface to the 
ground state surface. This initial wavepacket is shown centred around O=O", 
R = 1.9 A. The dissociating wavepacket is shown at a later time in the region of 40"- 
100". The analysis line ( R  = R,) is also shown on the diagram and corresponds exactly 
to that shown in figure 5. The partial cross-sections for the production of different 
rotationally excited states are obtained by an analysis identical to that outlined for 
vibrational product quantum states in equations (55-58). Figure 10 shows the results of 
this analysis, which is in agreement with available experimental results (Kable et al. 

' 

180'  

e 

9 0" 

O0 
0 - 9  2.5  R/i 4 -  1 

Figure 9. The time evolution of a wavepacket on the ab initio ground state potential energy 
surface (Bowman et al. 1986) of HCO. R and 0 are Jacobi coordinates for H relative to CO. 
(A), the wavepacket at t = 0; (B), the real component at t = 15.9 fs. The asymptotic analysis 
of the wavepacket to give CO rotational populations is carried out at R = R,. The energy 
interval between potential contours is 2000cm - '; three contours are labelled with the 
values of t'/(1000cm-')-'. 
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R R 
I 

2 3 ,  1 6  

R 
Figure 11. Vibrational wavefunctions of ground electronic state of H,S using the symmetrized 

local mode model (see Dixon et al. (1990)). The correspondence between the panel labels 
and local mode vibrational quantum numbers is (A) 00, (B) lo+, (C) 11,(D) 20+, (E) 21 +, (F) 
22 (reproduced with permission from J .  chem. Phys., 1990, 93, 6520). 

the S atom as being infinitely heavy in comparison with the hydrogen atoms. These 
bound vibrational state wavefunctions are used in equation (60) to compute the 
‘Raman amplitudes’ Jlv,), which are needed in equation (59) to calculate the emission 
spectrum. From these two equations we can see yet again that a single computation of 
the time dependent wavepacket dynamics will yield all the information needed to 
compute the emission spectrum for all wavelengths of the incident radiation (v,). Figure 
12 shows a comparison of the experimental (Person et al. 1989) and calculated emission 
line strengths where we have amalgamated strongly overlapping lines. The agreement 
between the two seems excellent. However recent calculations have shown that the 
model is not able to reproduce the more detailed emission spectral information 
obtained by Brudzynski et al. (1990), and that further refinements are still required. 

5. Theory of reactive scattering processes 
The first time depkndent quantum dynamical study of reactive scattering was 

performed by McCullough and Wyatt (1971). More recently the method has been used 
by Askar and Cakmak (1979), Kulander (1978), Kosloff and Kosloff (1983b), 
Leforestier (1984), Zhang and Kouri (1986) and most notably by Neuhauser and Baer 
(1989a, bc), Neuhauser et al. (1990, 1991). The recent successes of Neuhauser et al. in 
applying time dependent quantum dynamical techniques to reactive scattering 
processes has been based on using a grid representation of the wavefunction within a 
restricted inner ‘strong interaction’ region and switching to a basis set expansion in a set 
of rotational-vibrational functions in an ‘outer’ region where the interaction potential 
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Figure 12. Comparison of calculated and experimental emission spectrum of H,S during 
dissociation following absorption of an initial photon of 51 733 cm-’. Strongly overlapp- 
ing lines have been combined. 

is weaker (Metiu 1987, Neuhauser et al. 1990). The joining up of the inner and outer 
regions leads to a set of coupled equations (Neuhauser and Baer 1989b, c), while the 
analysis of the product quantum state distribution requires a change of coordinates or 
grids as well as the use of projection operators and of a complex absorbing potential 
(Judson et al. 199 1). Computation of the state-to-state reactive cross-sections requires 
the evaluation of the time independent scattering wavefunctions by performing a time 
to energy Fourier transform (Neuhauser et al. 1990). 

The same methods as outlined above for photodissociation processes may be 
applied to the computation of reactive scattering cross sections. This approach is more 
straightforward than that of Neuhauser et al. It retains the simplicity of theory and 
transparency of interpretation which is a hallmark of grid based time dependent 
quantum dynamical methods (Marston et al. 1991). It should also permit a simpler way 
of utilising the great advantage of such methods by automatically yielding the reactive 
scattering cross-sections over a large range of energies. The first step in such a 
computation is to define an initial wavepacket. This is generally taken to be a Gaussian 
in the reactant scattering coordinate multiplied by a bound vibration-rotation state of 
the reactant fragments. This stationary Gaussian function must be multiplied by a 
phase factor of the form exp [ - ik(R -RO)] to give the initial wavepacket a relative 
kinetic energy. For the collinear F + H,(v)+HF(v’) + H reaction the initial wavepacket 
prepared in this way takes the form: 

@(RF-Hp RH-H, t=o)=exp [-ik(RF-H2 -RE-Hz)l exp - R ~ - H z ) 2 1  ~v(~H-H)* 
(61) 
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m N 

Figure 13. Contour plot of the absolute value of the initial wavepacket ( t = O )  for the 
F + H,(u)-HF(u') + H reaction superimposed on a contour map of the potential energy 
surface. Also shown is the analysis line in the HF+H exit valley (i.e. RH-HF= RHPHF+J 
along which the wavepacket is analysed at each time step (reproduced with permission 
from Theor. chim. Acta, 1991, 79, 313). 

so 
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. so  

.so 

Figure 14. Time development of initially prepared wavepacket representing a reactive collision 
of the F + H,-+HF(u) + H system in a mode1 colIinear collision process. ( A )  at 14.5 fs, ( B )  at 
58.0fs, (C) at 218.0fs (reproduced with permission from Theor. d i m .  Aetu, 1991,79,313). 
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340 G. G. Balint-Kurti et al. 

The ‘width‘ parameter of the wavepacket, u, is chosen so as to obtain the desired spread 
of energy while the momentum, k, determines the mean relative kinetic energy of the 
collision partners. Figure 13 shows an initial wavepacket superimposed on a contour 
diagram of the potential energy surface for the collinear F + H,(v)+HF(v’) + H 
reaction. The diagram shows the ‘analysis line’. Just as in the case of photodissociation 
processes a cut is taken through the wavepacket at each time step and this slice of the 
wavepacket is then expanded in terms of the product quantum states (see equations (55) 
and (56)). In this way we obtain a set of time dependent coefficients; 

and the Fourier transform of these coefficients yields the 
dependent coefficients (see equation (57)); 

I rw 

corresponding energy 

(63) 

In order to compute the reactive scattering cross-section we need to know the 
amplitude of the initially prepared wavepacket which corresponds to a particular 
kinetic energy. This information is provided by the Fourier transform of the Gaussian 
wavepacket in the reactant scattering coordinates; 

1 r m  

A knowledge of the amplitudef(k,) (equation (64)) and of the energy dependent 
coefficients A ,  (equation (63)) then enable us to compute the squares of the reactive 
scattering S matrix elements, and from them the reaction probabilities (for a collinear 
system) or the state-to-state reactive cross-sections for a fully three dimensional 
calculation; 

P U , d  = Isu~u12 

Figure 14 shows the time development of the initial wavepacket (figure 13) for the 
collinear F + H,(v)+HF(u’) + H reaction. We see that a clear nodal structure develops 
with time and is maintained for a considerable time. This structure corresponds to the 
‘reactive resonance’ which has been well documented for this system. The time 
dependent coefficients C,#(RH-HF, w; t), equation (62), are shown in figure 15 for the two 
principal product HF quantum states. The coefficients should die off to zero with 
increasing time. They did not do so in the preliminary calculations performed so far and 
an artificial damping function has been applied to them the force this correct physical 
behaviour (Marston et al. 1991). We believe that the reason for this shortcoming lies in 
the manner in which the wavepacket was damped our near the edge of the grid. A 
thorough study of the optimal complex damping potentials to be used for this purpose 
has just been completed and will be published in the near future (Vibok and Balint- 
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PRO DUCT VI BRAT10 N A L ST ATE-3 

TIME ( A U I 1 0 )  
21 , :s  

Figure 15. The absolute values of the time dependent coefficients Cv,(RH-HFq m; t )  for the u’= 2 
and u’= 3 HF product vibrational quantum states resulting from the asymptotic analysis 
of the wavepacket for the collinear F + H, +HF(u) + H reaction. The long time tail of the 
coefficients has been multiplied by an exponential damping factor (see Marston et nl. 
(1991)), (reproduced with permission from Theor. chim. Acta, 1991, 79, 313). 

L 0.8 

Total Energy / e.V. 

Figure 16. The probabilities of producing final H F  vibrational quantum states u‘ = 2 and u’ = 3 
in the collinear reaction F + H, +HF(u) + H as a function of energy (see equation (64)) as 
obtained from the damped coefficients of figure 15, (reproduced with permission from 
Theor. chim. Acta, 1991, 79, 313). 
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Kurti 1992). The results iof this study will enable us and others to choose optimised 
complex absorbing potentials for any desired physical situation. 

Figure 16 (Marston et al. 1991) shows the reaction probabilities (equation (65)) for 
the two main product vibrational states as a function of energy. The resonance features 
are clearly visible and are all accurately predicted (see Schatz et al. (1975)). Some small 
oscillations in the energy dependence of the reaction probabilities arise from the 
artificial manner in which the time dependent coefficients have been damped for long 
times. The great advantage of the time dependent techniques is again illustrated 
through the fact that a single computation of the dynamics produces information on 
the reaction probabilities at all energies. 

6. Summary 
In the above a somewhat selective overview has been given of the current state of the 

theory of grid based methods as used for the computation of bound molecular 
vibrational wavefunctions and for molecular photodissociation and reactive scattering 
process. The main omission has been the lack of mention of the extensive use of the 
discrete variable representation (DVR) approach of Light and coworkers (Light et al. 
1985, Light and Bacic 1987, Bacic, Watt and Light 1988). The grids generated by the 
DVR approach are not, in general (see however Whitnell and Light (1989)), regular and 
cannot be used in conjunction with Fourier transform techniques. The Fourier grid 
Hamiltonian method (Marston and Balini-Kurti 1989, Balint-Kurti et al. 1991), which 
is described in Section 2, provides an extremely simple way of computing bound state 
wavefunctions, while not explicitly involving any basis functions or potential energy 
matrix elements. It is furthermore ideally suited for use in conjunction with the regular 
grids used in the Fourier transform based methods which arise in time dependent 
quantum dynamics. 

Most methods for solving the time dependent Schrodinger equation involve the use 
of grid methods, and since the work of Kosloff (1988) utilize the great efficiency of the 
discrete fast Fourier transform technique. They differ from time independent methods 
in that they are ‘initial value’ methods. That is we start from a known quantum state of 
either the initial electronically excited molecule (photodissociation) or of the reactants 
(reactive scattering) and the solution of the time dependent Schrodinger equation yields 
all possible outcomes of interest arising from this starting point. The logistics of 
including many highly excited initial quantum states, in which we have no real interest, 
for the sake of achieving numerical convergence is absent in this approach. Also the 
methods, as we have been applying them, automatically yield the cross-sections of 
interest over a very wide energy range from a single computation of the wavepacket 
dynamics. Illustrations of these advantages of time dependent quantum dynamics have 
been give in the equations (equations (5340,62,63 and 65)) and in figures 7,8, 12, 15 
and 16. Methods such as those described here rely for their application on the rapidly 
growing power of new computer technology and as this continues to develop they will 
gain in popularity. 
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